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Background:

— Engine system has to satisfy a range of requirements:

e Customer needs: initial cost, fuel consumption, transient response, reliability &
durability, and noise

e Engine robustness to fuel feedstock (bio, synthetic etc.), thermophysical properties (e.g.
volatility, viscosity), cleanliness (e.g. water, particles), and sulfur levels

e Regulatory: Tier 4, GHG, particle size, OBD

Technology areas:
— Fuel system (injection pressure, injector nozzle configuration, filtration etc.)

— Air system (turbochargers, EGR-system)

— Combustion system (injection strategy, valve timings, piston bowl etc.)

— Aftertreatment (DPF, regeneration system, NOx aftertreatment etc.)
Experimental facilities:

— Single-cylinder engine

— Spray lab
Simulation tools:

— Cycle simulation

— CFD

Some current gaps
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C9 ACERT Engine with NOx Reduction




C9 ACERT Engine with Clean Emissions
Module




World Fuels Study

e  Context: The world fuels study tested fuel samples from over 100 countries.

e Findings:

— The fuel sulfur level, which may affect aftertreatment performance varied
significantly across different regions of the world
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— The fuel particulate content, which affects fuel system performance (filtration)
also varied greatly and exceeded acceptable limits in ~15 countries

Particle Distribution Across Regions
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US EPA Off-Highway Regulations
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e Technology areas:
— Fuel system (injection pressure, injector nozzle configuration, filtration etc.)
— Air system (turbochargers, EGR-system)
— Combustion system (injection strategy, valve timings, piston bowl etc.)
— Aftertreatment (DPF, regeneration system, NOx aftertreatment etc.)




Combustion Technology Building Blocks

Injection Pressure
Injection Rate Shape
Injector Nozzle Configuration
Piston Bowl| Design
Valve strategies
Increased PCP
Advanced turbocharging
Reduced Friction
Reduced Heat Rejection
Fuel Formula

Transient optimization

Combustion and Fuel
System




NOXx emissions

NOx formation @ T > 2800K
— diffusion flame region surrounding the
combusting spray

Control NOx by reducing flame
temperature
— retarding combustion phasing 2
increases BSFC

— dilution via EGR

* increase mass per mole 02 (for diffusion
combustion)

* also increases c, of gas (CO2, H20)
* increases heat capacity of gas per 02
— - lower flame temp

— lower O2 has implications on soot
emissions
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e Soot oxidation
—mixing, time and temperature

Smoke Emissions with Current Technologies
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Single-Cylinder Test Data

AVL Smoke
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EGR can significantly improve
BSFC at given NOx level

...does not come for free...soot is a
challenge, which requires
advanced combustion system
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Injector Nozzle Configuration

e Included Spray angle

Valve-Covered Orifice
vs. Minisac

e Spray Targeting

SAC
Geometry

e Number of holes
e Steady Flow (Orifice diam.)

Aspect Ratio
(L/D)
e K-factor

“Counterbore ° L/D
e Inlet rounding

Orifice Taper -
(k-factor)

Hydro-grind
ing (HEO)
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Sootless “Lifted Flame” Concept

Fuel droplets, fuel vapor, and air I
o Vaporized fuel and air
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e Experimental facilities:
— Spray lab
— Single-Cylinder Optical Research Engine




High Temperature Pressure Vessel (HTPV)

3

Air/N2, fuel,
products out

World class injection test facility

e Capable of producing in-cylinder TDC-
like conditions (1000 K, 15 MPa,
0-20% O, with balance N,)

e Enables quantitative spatial
measurements of

Fuel — Heated sprays
Injection — Combustion experiments

e Use:

— Evaluate combustion and fuel injector
technologies

— Validate CFD models with quantitative
spatial information

— Diagnose issues with engine
combustion system hardware



time=0.000225s
MIE light scattering off of liquid drops — Non-

Combusting (liquid spray behavior, liq. length)
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C9 Bowl Size



Nozzle Characterization — X-Ray CT

Workpiece
/ X-ray source

x-ray detector

Rotary axis
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Impact of Nozzle machining

B30-Point, Engine-Out Soot Comparison of Nozzles
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e Nozzles machined to be identical may behave very
differently
e Accurate manufacturing is critical




3176 Optical Engine at Sandia National Labs.
e Sandia 3171 Optical Engine

e Full optical access
e World-class combustion and spray diagnostics

e Explore advanced nozzle concepts under
transient conditions

0.08 AVL 0.08 AVL
Smoke Smoke
0.3 AVL 1.0 AVL
Smoke Smoke
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Piston bowl design (+ injector nozzle)

e Provide interaction with spray to promote fuel-air mixing
e Provide good late-cycle mixing to enable soot oxidation
e Minimize deposits and oil contamination

Bowl Comparison
Baseline Bow! Volume = 89.38162636584298
Matched Bowl Volume = 89.24134415256087
Baseline CR =20
Matched CR =20.02000589272399
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Piston Bowl Shape Comparison

Baseline
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Drive Simulation Excellence

Combustion Viz. in Physical as well as Phase Space
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Visualization the combustion process in phase space offers
additional insight into mixture stratification and temperature

distribution throughout the cycle



Bowl Design Impact on Deposits / Oil
Consumption

Soot Behavior

e More soot reaching the sensitive

areas may lead to:
Combustion CFD

¢ More formation
¢ Less oxidation

e Soot location further from tip

Liquid Fuel

e Impinging and partially oxidizing on
piston top or cylinder walls, especially
at end of injection or early pilots

e Fuel properties or reaction with oil
and partial oxidation



Outline

Background:

— Engine system has to staisfy a range of requirements:

e Customer needs: initial cost, fuel consumption, transient response, reliability &
durability, and noise

e Engine robustness to fuel feedstock (bio, synthetic etc.), thermophysical properties (e.g.
volatility, viscosity), cleanliness (e.g. water, particles), and sulfur levels

e Regulatory: Tier 4, GHG, particle size, OBD

Technology areas:
— Fuel system (injection pressure, injector nozzle configuration, filtration etc.)

— Air system (turbochargers, EGR-system)

— Combustion system (injection strategy, valve timings, piston bowl etc.)

— Aftertreatment (DPF, regeneration system, NOx aftertreatment etc.)
Experimental facilities:

— Single-cylinder engine

— Multi-cylinder engine

— Spray lab
Simulation tools:

— Cycle simulation

- CFD

Some current gaps




Some current gaps in our understanding

e Validated chemical mechanisms under dilute and high
pressure conditions

e Ability to simulate transient soot emissions efficiently
(with respect to time)

e Performance and durability impact of wide range of next
generation fuels (diesel and natural gas) on engines and
aftertreatment systems



Questions?



